Reflective FDMA-PON with 32 Gbps upstream capacity per wavelength and more than 32 dB ODN loss

S. Straullu1, P. Savio1, J. Chang2, V. Ferrero2, A. Nespola1, R. Gaudino2, S. Abrate1

1Istituto Superiore Mario Boella, Torino, Italy
2Politecnico di Torino, Torino, Italy
Outline

- The EU project FABULOUS: proposed architecture
 - Focus of the paper: upstream physical layer
- Optimization of several transmission parameters
- Experimental results
- Conclusion
FP7-ICT-2011-8 – Objective 3.5: Core and disruptive photonic technologies

“Application-specific photonic components and subsystems”

“For access networks, the goal is affordable technology enabling 1-10 Gb/s data-rate per client”
System architecture
Frequency division multiplexed (FDMA) PON

- PON based on electrical subcarrier
- FDM/FDMA in both directions
- This presentation: focus on upstream

OLT

\(\lambda_{CW} \)

ONU

\(f_i \)

\(f_j \)

\(B_i \)

\(B_j \)

Electric signal OUT

Self-coherent receiver

Electric signal IN

FDMA Access By Using Low-cost Optical Network Units in Silicon photonics

FP7-ICT-2011-8 Challenge 3.5 – STREP project n. 318704 – FABULOUS
Detail on the ONU

One of the main purposes of the project is to integrate the required reflective ONU on a Silicon Photonics platform.
Self-coherent detection at OLT

- Self-coherent detection at OLT enables high ODN loss achievements even in a reflective architecture
 - Intrinsic Faraday rotation at R-ONU allows simplified single polarization coherent detection at the OLT

![Diagram showing self-coherent detection at OLT](image-url)

ECL CW laser

PBS

PM fiber

PM fiber

Local Oscillator

Signal

Single Polarization Coherent Receiver

Towards OLT

SMF fiber

x

y

Towards OLT

DSP
Novelty of this work

The novelty of this work compared to previous papers of the FABULOUS project consortium is related to:

- Focus on **maximum possible ODN loss**
 - To be compliant with ITU-T ODN loss classes
 - **high bit rate per user** (all users at 1 Gbps)

- **Optimization** of several ONU free parameters
System Upstream Experiments
Main physical layer parameters

- **Data rate per user fixed at 1 Gbps**
 - (net data rate, giving a gross rate of 1.2 Gbps including FEC, overhead and line coding)

- **Modulation format fixed at 16-QAM**
 - Raised cosine spectrum, roll-off=0.1
 - Requires $B \sim 330$ MHz per user

- **32 users per wavelength**
 - the modulator has 11 GHz cut-off

Electrical spectrum

Approximately 11 GHz total required bandwidth

$B = 330$ MHz

$f_{1, RF}$ $f_{2, RF}$ $f_{3, RF}$ \ldots $f_{N, RF}$ f_{el}
Parameters to be optimized

- Modulation index \(MI = \frac{V_p}{V_\pi} \)
 - Peak voltage of the electrical signal
 - \(V_p \) of the Mach-Zehender modulator

- Electrical channel allocation \(f_1 \ldots f_N \)

- Electrical frequency spacing \(\Delta f = f_{i+1} - f_i \)

- SOA biasing current \(I_{bias} \)
Optical spectrum (high resolution OSA)

Electrical subcarrier at $f_i=2\text{GHz}$

For different modulation indexes

One modulated ONU at electrical subcarrier frequency $f_i=2\text{GHz}$

Modulation index from 0.1 to 0.4

Second harmonic at $2f_i=4\text{GHz}$

Power spectral density [dBm/Hz]

Frequency [GHz]
Minimizing the nonlinear effects

- The second harmonic can generate crosstalk on a higher frequency useful subcarrier, used by another ONU

- We thus theoretically and experimentally found:
 - An optimized modulation index
 - An optimized position for the comb of subcarriers
Optimizing the modulation index

Simulation using realistic system parameters

32 channels modulate using 16-QAM

EVM (%) vs. m_{index}

FP7-ICT-2011-8 Challenge 3.5 – STREP project n. 318704 – FABULOUS
FDMA Access By Using Low-cost Optical Network Units in Silicon photonics
Subcarrier frequency allocation

Best frequency allocation:
second harmonic falls exactly
at in the middle of two
another modulated channels

Worst frequency allocation:
second harmonic falls exactly
at the center of another
modulated channel
Upstream setup – 2 active ONUs

OLT

\[\lambda_{US} \]

90/10

PBS

+9dBm

ODN

37km

VOA

PM Fiber

R-MZM

1x2

ABC

16QAM

37km

R-MZM

16QAM

PM Fiber

PM Fiber

PM Fiber

100GHz PM-filter

VOA PM

EDFA PM

EDFA PM

Noise Loading

EDFA

Filter

EDFA

VOA

Real Fiber Testbed

Real-time FPGA 4 S/symb (1 GS/s)

RX

16QAM

ONU i

IQ MOD

16QAM

ONU j

IQ MOD

f_i

f_j

VOA

EDFA

Filter

EDFA

Real Fiber Testbed

FP7-ICT-2011-8 Challenge 3.5 – STREP project n. 318704 – FABULOUS
FDMA Access By Using Low-cost Optical Network Units in Silicon photonics

16
Electrical channel spacing optimization

At 330 MHz spacing, the penalty becomes negligible.
SOA biasing current optimization

Bit Error Rate vs. SOA bias current [mA]

- MI=20%
- MI=40%

SOA bias optimization (as a function of MI and ODN Loss)

FP7-ICT-2011-8 Challenge 3.5 – STREP project n. 318704 – FABULOUS
FDMA Access By Using Low-cost Optical Network Units in Silicon photonics
SOA biasing current optimization vs. ODN loss
Choice of the Forward Error Correction

As a starting point for our reference, we considered two FEC with correction ability for BER post-FEC of 10^{-15}

- A FEC defined in ITU-T G.975.1 for high bit rate DWDM submarine systems (FEC 1)
- A third generation code featuring concatenated FEC with soft decision (FEC 2)

<table>
<thead>
<tr>
<th>FEC</th>
<th>Code</th>
<th>Overhead</th>
<th>BER pre-FEC threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEC 1</td>
<td>RS(1023,1007) + BCH(2047,1952)</td>
<td>6.69%</td>
<td>$2.17 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>FEC 2</td>
<td>RS(992,956) + LDPC(9216,7936)</td>
<td>20.5%</td>
<td>$1.0 \cdot 10^{-2}$</td>
</tr>
</tbody>
</table>

FP7-ICT-2011-8 Challenge 3.5 – STREP project n. 318704 – FABULOUS
FDMA Access By Using Low-cost Optical Network Units in Silicon photonics
BER vs. ODN loss and modulation index

BER contour plots

Small inaccuracy in the title (we are slightly below 32 dB) … our fault!

FP7-ICT-20
FDMA Access By Using Low-cost Optical Network Units in Silicon photonics

N1 class
N2 class
Conclusions

We demonstrated

- with a launched power of $P_F=9dBm$ (same as in TWDM-PON highest classes)
- using an installed metropolitan fiber network

that the **FABULOUS** upstream reflective FDMA PON supports:

- a total capacity of **32 Gbps** per wavelength
- more than **31 dB** of ODN loss (satisfying N2-class of TWDM-PON standard)
32 Gbps net capacity upstream is significantly better than what is today envisioned for the first implementations of TWDM-PON (4λx2.5 Gbps)

This is **WITHOUT requiring WDM**, but only single wavelength operation

DSP is required at ONU, but at very reasonable speed (<1Gsample/s)

- In fact, the Orange Lab Demo at this conference implemented this DSP using consumer electronic chipsets coming from wireless-USB applications
Acknowledgments

The research leading to these results has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement n°318704, titled:

FABULOUS: “FDMA Access By Using Low-cost Optical Network Units in Silicon Photonics”

- WEB site: www.fabulous-project.eu
- To contact the Consortium: info@fabulous-project.eu
- To contact the author: Roberto Gaudino
 E-mail: gaudino@polito.it